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J .  Phys. A: Gen. Phys., Vol. 5, May 1972. Printed in Great Britain 

High temperature series for the susceptibility of the 
Ising model 11. Three dimensional lattices 

M F SYKES, D S GAUNT, P D ROBERTS? and J A WYLEST 
Wheatstone Physics Laboratory, University of London, King’s College. U K  

MS received 24 August 1971 

Abstract. Extended series expansions for the high temperature zero-field susceptibility of the 
Ising model are given in powers of the usual high temperature counting variable c = tanh K 
for the simple cubic lattice to the body-centred cubic lattice to t”’, and the face-centred 
cubic lattice to r l 2 ,  inclusive. The coefficients are analysed by the ratio method and it is esti- 
mated that, subject to the implicit assumptions thereof, the critical temperatures correspond 
tot+ = 0~21813~0~oooO1 ( s c ) , ~  = 0~15612~0~00003(~cc)andt . ,  = 0~10174fOOOCKI1 (FCC). 
The asymptotic behaviour of the coefficients is studied in detail; for the loose-packed 
lattices the decay of the even-odd oscillation in the ratios is found to be consistent with the 
assumption that the critical index of the high temperature specific heat is very close to Q. 

1. Introduction 

Exact series expansions have been widely used to study the physical properties of the 
three dimensional lsing model of a ferromagnet and an antiferromagnet. There is an 
extensive literature and we shall assume a general familiarity with the problem ; reviews 
on a broad base are those of Domb (1960), Fisher (1967), and Kadanoff er ul (1967). 
In a previous paper (Sykes et ul 1972a, to be referred to as I) we have given a specialized 
introduction to a study of the susceptibility of the two dimensional Ising model ; this 
paper studies the analogous problem presented by the three dimensional Ising model. 
We follow the notation of I. 

In I we extended series expansions for the susceptibility in two dimensions and 
found that the second order asymptotic behaviour, or approach terms, can apparently 
be recognized. In this paper we present extended series expansions for the susceptibility 
of some three dimensional lattices. We have derived expansions for the reduced zero- 
field susceptibility in ascending powers of the high temperature counting variable 
L‘ = tanh K in the form 

1 

1 = 1 up’ u g  = 1. 
r = O  

We have extended the expansions for the simple cubic lattice by six coefficients to r l i .  
for the body-centred cubic lattice by six coefficients to ul’,  and for the face-centred 
cubic lattice by four coefficients to c I 2 .  We give these expansions in the Appendix; 
as in I, and for the same reasons, we do not describe the derivation. We present the 
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investigation in the variable U only, as we have found the extrapolations quite insensitive 
to a change to the more direct temperature scale that corresponds to using K in place 
of tanh K .  

The ferromagnet exhibits a phase transition at a critical temperature T, and much 
effort has been devoted to an elucidation of the critical behaviour of the physical 
properties near T,. The most successful general approach appears to be that of exact 
series expansions. In general it has been found that series expansions above T, are 
reasonably well behaved and converge right down to the critical point ; in other words 
the radius of convergence of high temperature expansions determines T,. In contrast, 
series expansions below T, are usually ill behaved and do not converge up to the critical 
point. Such behaviour is apparently due to nonphysical singularities in the complex 
plane, inside the physical disc (TI < T,; when, exceptionally, the series do converge 
up to the critical point their behaviour is not as good as at high temperatures (Essam 
and Sykes 1963). 

To exploit a series expansion effectively, an accurate estimate of the radius of 
convergence is required. For high temperature series it is customary to assume that 
estimates derived from the high temperature susceptibility expansion are the most 
precise, and in general these are adopted in studies of critical behaviour (Essam and 
Fisher 1963). However the practical estimation of the radius of convergence of a power 
series usually involves making assumptions about its generating function ; in some 
instances this could give rise to cyclical argument and result in errors of interpretation. 
Fortunately, for the physical properties of interest, such as susceptibility and specific 
heat, it seems that the dominant, or first order, critical behaviour above Tc is reasonably 
well indicated. 

In the critical region for a ferromagnet the reduced susceptibility is found to behave 
asymptotically as 

x - A + ( l  -u /uf ) -1 '25  L' -+ U , f  (1.2) 
where t'f = tanh J/kT,, and the amplitudes A +  and A -  above and below the critical 
temperature T, are constants. The form (1.2) differs from that found in two dimensions 
only in the value of the critical index of 1.25 in place of 1.75. Originally based on series 
expansions (Domb and Sykes 1957), the conjecture for three dimensions is reasonably 
consistent with the available data and is appealingly simple. We investigate higher 
order terms in the asymptotic expansion (1.2) above T,. We find that, in close analogy 
with the two dimensional result, the data are consistent with the form 

- (1-c/u,)-"~5@(u)+Y(U) (1.3) 
where @ is regular in the disc 1 0 1  < uf and Y is not singular at U = uf. The amplitude 
A ,  = @(of) but "(U,)  # 0 although the ratio Y(of)/@(uf) is small; this latter finding 
accounts for the reasonable success of earlier investigations based on dividing out the 
dominant singularity (Fisher and Sykes 1962). 

In the antiferromagnetic critical region for a loose-packed lattice the reduced 
susceptibility, following the general arguments of I, is expected to behave like the energy. 
Fisher and Sykes (1962) followed Wakefield (1951) in assuming a logarithmic singularity 
in the specific heat and the corresponding form 

x x, -a*(  1 + u/uf) lnll + v/ufl U -+ U ,  = -U , .  (1.4) 
More recent investigations (Sykes er a1 1967 and 1972b) have suggested that the specific 
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heat above Tc is not logarithmic but instead diverges inversely as an one eighth power ; 
the corresponding form is 

x ‘v Xa+a+(l+Cju,)0~~75 t:-+ -Et . ,$ .  (1.5) 

We shall find the extended data consistent with this assumption. 
The general scheme of our treatment is first to seek guidelines by an analysis of the 

coefficients in expansions for two dimensional lattices where the radius of convergence 
is known ; then we investigate whether a similar pattern of asymptotic behaviour can 
be recognized in the coefficients in expansions for three dimensional lattices. We 
anticipate our conclusions and state that we believe it can; on this basis we make what 
we consider to be precise estimates of critical temperatures subject to the implicit 
assumptions and hypotheses of the method. 

2. Close-packed lattices 

The elementary treatment (Domb and Sykes 1957) supposes that near T, 

where A (the amplitude) and y (the critical index) are constants. I t  follows from the 
binomial theorem that the ratio of successive coefficients in the expansion of the 
susceptibility satisfies 

In words: as n increases, pn should approach linearity against l /n.  The parameters 
p and y can be estimated by plotting the available values of pn against l/n and extra- 
polating graphically, or by equivalent numerical procedures. Early studies suggested 
strongly that the critical index is insensitive to the structure of the lattice and very close 
to 1.75 in two dimensions and 1.25 in three dimensions. By making the hypothesis 
that these appealingly simple fractions are exact more precise estimates of p (consistent 
with the hypothesis) can be made. This is conveniently done (Domb and Sykes 1961) 
by assuming y in (2.1) and studying 

which, from (2.1), should approach p with no slope against l/n. Now that longer series 
are available it is worthwhile extending the treatment to higher order. Following I we 
replace (2.1) by the more general assumption that near T, 

x - ( l -pU) -qu)+Y(u)  (2.4) 

where aJ and Y are regular in the disc JuI < u f .  The corresponding asymptotic behaviour 
of p, is readily derived from the analysis of I (equation (2.5)) and we find 

(2 .5 )  
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3.73205- 

3.73200- 

where 5, 5* ,  . . . are constants. In words: as n increases, p, should approach linearity 
against l/n2. More generally p,, should be represented by an expansion in inverse 
powers of n. Attempts to fit numerical data to representations ofthis kind are notoriously 
difficult when only a few terms are available and often give rise to so called small number 
effects. We investigate the possibility for the triangular lattice by solving two orders 
of approximation (to the ferromagnetic singularity). 

First order, which we denote by p ( 1 ~ )  

Second order, which we denote by p ( 2 ~ )  

5 5* p, = p 1 + - + -  ( n* n 3 )  

The procedure is to solve (2.6) using successive pairs, or (2.7) using successive triplets, 
of B, and so obtain a sequence of estimates for p. We illustrate the results in figure 1. 

Exact 
l imi t  

Figure 1. Triangular lattice. Estimates for p = l /uc.  (A) First order approximation b(1~). 
(B) Second order approximation p(2F). 

It is clear that only after about a dozen terms does any definite trend develop. For the 
higher terms available the first order approximation settles down to a smooth sequence 
of estimates for the critical point ; the second order approximation appears to be on 
the verge of becoming smooth. The last estimate of p(1~) is within 1 part in 50000 
of the correct value, that of p ( 2 ~ )  within 1 part in 200000. 

The fact that the asymptotic forms fit the data for two dimensions well is only to be 
expected from the investigation of I ; the limiting asymptotic behaviour there proposed 
(I, (2.6)) corresponds to 

x - A ( ~ - ~ u ) - Y + B ( ~ - ~ u ) - Y + ~ + c ( ~ - ~ u ) - Y + ~ +  . . .  +Y(u) (2.8) 
with y = 1.75 and A,  B, C,. . . constants which can be related to 5, 5* ,  . . . of (2.5). In 
particular 
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From the data illustrated in figure 1 we conclude that the proposed sequence of 
approximations provides a satisfactory procedure for locating the critical point. With 
the data presently available no improvement results from approximations of higher 
order than (2.7). 

For the face-centred cubic lattice we now try the assumption that (2.8) still holds 
with y = 1.25. We illustrate the corresponding results for  IF) and b ( 2 ~ )  in figure 2 .  

9.83001 

9.82901 

I 

9.82601 

i f , , , ,  
6 7 8 9 ” I O  I /  12 13 

Figure 2. Face-centred cubic lattice. Estimates for p = 1.0,. (A) First order approximation 
I](~F). (B) Second order approximation I](~F). 

In assessing these it should be realized that only 12 coefficients are available; therefore, 
unless convergence is much more rapid in three dimensions, a smooth region should 
barely have been reached; in addition the asymptotic behaviour might well be more 
complex. Nevertheless we consider the results consistent with the view that a steady 
behaviour is developing and make the estimate 

p = 9.8290kO-0005. (2.10) 

Further coefficients are needed to confirm that the indicated trends persist ; the estimate 
(2.10) assumes they do. So far we have found nothing inconsistent with the hypothesis 
that (2.8) is applicable in three dimensions. 

Because of the limited data we do not present a detailed analysis. Following the 
method of I (4 2) the available coefficients can be fitted to (2.8) to give an approximate 
representation consistent with (2.10). Writing t = u/uf we obtain (correct to 4 decimal 
places) 

X(U) 1 04634( 1 - t ) -  ’’ + 04965( 1 - t ) -  O’’ 

+0.4993(1 -t)0”5+Y3(t) 

Y 3 ( t )  = - 0.6593 + 0.3420~ + 0.0276t2 + 0.0073t3 

+0~0026t4+0.0011t5 +0.0004t6 +0.0001t7. 

(2.11) 

(2.12) 



High temperature susceptibility of Ising model I I  645 

Only the leading amplitude is reasonably well defined and we estimate 

A = 0.963 & 0.002. (2.13) 

3. Loose-packed lattices 

For a loose-packed lattice the zeroth approximation 

P, = P (3 .1)  

leads to an oscillatory sequence of estimates because of the presence of the anti- 
ferromagnetic singularity on the radius of convergence. The elementary treatment 
now supposes that near T, 

x - A ( l - p U ) - Y + a ( l + p u ) - a + ’  (3.2)  
where the second term is introduced to represent the antiferromagnetic singularity. 
As already explained in I, the representation of the two singularities as a sum will be 
adequate asymptotically even if product terms are present. The antiferromagnetic 
critical behaviour is assumed to be the same as that of the energy; in other words a in 
(3 .2)  is assumed to be the critical index of the specific heat ; the theoretical basis for this 
assumption is given in I. 

The coefficients a,  of the susceptibility expansion now follow from the binomial 
theorem ; the contributions of the first and second term are asymptotically proportional 
to ny-  ‘pa and no-’( - 11)” respectively. Thus if (3.2) were exact the ratios should contain 
an oscillation which declines asymptotically as l / n Y - “ + ’ .  In two dimensions c1 = 0 
and adopting y = 1.75 gives l / n 2 ’ 7 5 ;  we therefore expect the oscillation to fall off 
rapidly with n. In three dimensions a is not known exactly; adopting the hypothesis 
a = 0.125 (Sykes et aI 1967,1972b) and y = 1.25 we obtain l/n2’12’ ; the oscillation should 
prove more persistent in three than in two dimensions. 

Extending the analysis of 0 2 we replace (3 .2)  by the more general assumption 

x 5 ( l - p u ) - W f ( u ) + ( l  + p u ) - 4 + l @ a ( u ) + Y ( t . )  (3.3) 

where Of, @a and Y are regular in the disc IuI < o f .  The corresponding asymptotic 
behaviour of p, is found to be 

p, = p ? 1+-+,+ .. ?* . +(- 1)”- , ,y-a+ i 1 + ( - l ) ” - +  [* . . .  ) . ( n 2 n  (3.4)  

Despite the complexity introduced by the second singularity the conclusion that 
P, should become asymptotically linear against l / n 2  for large n still holds. Following 
the general approach of the previous section the first order ferromagnetic approximation 
p(  1 ~ )  is still 

but we now solve for alternate pairs of P,; the use of alternate pairs smooths out the 
even-odd oscillation. The first order antiferromagnetic approximation P( 1 ~ )  we take as 

p, = 11 ( 1 + ( - 1 ) ” -  , ,Y -a+ l  ii 
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solved in the same way, although successive instead of alternate pairs of f i n  could be 
used in this case. Finally the combined first order approximation f i ( l ~ ,  1 ~ )  

is solved from successive triplets of p,. 
The estimates under these three approximations for the square lattice are illustrated 

in figure 3. For P ( ~ F )  there is a persistent even-odd effect but for n > 12 the values 

2.41461 +- 

2,41421 

" 2.41 38 

2.41 34 :I 
ri- _ _ - -  

- - - - --+ 
C 

v' *.------e--- 
A' 

p- ; i+  c-- __-- -  
+ 

4- 
* 

+ 

Exact 
limit 
- 

+ B  
t- 

+ 
I 

2.41301 I I 

1 1  13 15 17 19 21 23 
n 

Figure 3. Square lattice. Estimates for p = 1 1 ~ ~ .  (A) First order ferromagnetic approxi- 
mation b(1~). (B) First order antiferromagnetic approximation b(1~). (C) Combined first 
order approximation B ( ~ F ,  1 ~ ) .  

settle down to a fairly smooth behaviour; the last ten values are all within 1 part in 
10000 of the true limit. For p ( 1 ~ )  there is no detectable oscillation and a smooth 
behaviour again develops as n increases; the approach to the true limit is slower 
because of the neglect of the nonoscillatory term in l/n2. The combined approximation 
P(~F,  1 ~ )  takes account both of the quadratic term and the oscillation and gives a very 
good sequence of estimates for p for n > 15 ; the last estimate is within 2 parts in 1OOOOO. 
We have investigated higher approximations such as B(~F,  1 ~ )  by solving 

and found the number of coefficients available not adequate for these to provide any 
improvement. 

The estimates under the same three approximations for the simple cubic lattice are 
illustrated in figure 4. The behaviour is similar to that of the square lattice. The 
antiferromagnetic approximation appears to converge more rapidly ; this is partly 
because the index assumed for the oscillation (2.125) is now very close to the index for 
the nonoscillatory term, and partly because r$[ for this lattice is of the order of 0.1. 
The fact that the oscillation is effectively smoothed for P ( ~ A )  supports the assumption 
that the critical index for the specific heat is very close to $; the procedure is quite 



High temperature susceptibility of Ising model 11 647 

t 

4.5836 
I I I I I I 6 I 

8 9 IO I I  12 13 14 15 16 17 18 
n 

Figure4. Simple cubic lattice. Estimates for p = l /uc .  (A) First order ferromagnetic 
approximation fi(1~). (B) First order antiferromagnetic approximation fi(1~). (C) Combined 
first order approximation B(lF,  1 ~ ) .  

sensitive to small changes in this index. We estimate from the figure that 

1 
Uf 

,U = - = 4.5844 f 0.0002. (3.9) 

In making this estimate we have followed the indicated trend; in other words we have 
assumed that the limit p is approached from below as it apparently is in two dimensions. 

In a similar manner, and making the same assumptions, we estimate for the body- 
centred cubic lattice that 

1 
U f  

,U = - = 6*4055f0*0010. (3.10) 

In this instance the steepness of approach seems slightly greater. We give the solutions 
to (3.7) for the square, simple cubic and body-centred cubic lattices in table 1. 

We conclude from the data of table 1 that our assumptions are adequate and no 
more complicated form is required. Accordingly we generalize (2.8) and write 

x - A(l  -pz~) -~+B( l  - p ~ ) - ~ + l +  . . . +a(l  + p ~ ) - ~ + l  

+b(l+pu)-"+'+ . . .  +Y(o) (3.11) 

with A, B, C , .  . . a, b, c,. . . constants. In particular 

- (y - 1)B 
v =  A (3.12) 

(3.13) 

where in two dimensions I-( - 1) is to be taken as unity. For the square lattice the 
values A = 0.7717, B = 0.2003 and a = 0.2003 found in I yield q = -0.3374 and 
( = -0.4770. The entries in table 1 are in reasonable agreement; the estimates of I 
are of course based on the known critical point. 

The equations (3.12) and (3.13) cannot be exploited without first estimating the 
value of A. We have therefore re-analysed the series for the simple cubic and body- 
centred cubic lattices by fitting to the form (3.1 1) using the same procedure as in I with 



648 M F Sykes, D S Gaunt, P D Roberts and J A Wyles 

Table 1. Solutions of Bn = p{ 1 +q/nz +( - lyc:n'-'+ '1 assuming y = 1.75, r = 0 in tao  
dimensions and y = 1.25, a = 0.125 in three dimensions 

Square Simple cubic Body-centred cubic 

Triad v , P 'I i / I  '1 i' 
~ ~~ __ 

I 2 3 -0.3047 -0.2358 2,45491 -0.0493 -0,0930 4.59917 -0,0878 -0.0759 6.47711 
2 3 4 -0.0749 -0,4133 2.37194 -0.0354 -0.0991 4,58936 -00081 -0.1112 6,39840 
3 4 5 -0,2854 -0,5519 2.41161 -0.0645 -0,1084 4,60004 -0.0248 -0,1165 6.40692 
4 5 6 -0.2921 -0.5473 2.41239 -0.0208 -0.1314 4.58098 -0,0024 -0,1226 6.39993 
5 6 7 -0.3659 -0.5934 2.41823 -0.0116 -0.1334 4.58236 -0.0285 -0.1283 6.40539 
6 7 8 -0,2908 -0.6409 2.41397 -0.0032 -0.1306 4.58395 -0.0176 -0,1304 6,40375 
7 8 9 -0,2302 -0.6053 2.41138 -0GO65 -0,1311 4.58422 -0.0271 -0.1320 6,40483 
8 9 10 -0.3483 -0.5356 2,41531 -00098 -0,1306 4.58443 -0.0226 -0.1327 6,40444 
9 10 11 -0,2770 -0,4957 2.41341 -0.0069 -0,1302 4.58428 -0.0270 -0.1333 6.40474 
10 11 12 -0,3042 -0.4805 2,41400 -0~0058 -0.1303 4,58423 -0.0266 -0,1333 6,40472 
11 12 13 -0,3186 -0.4882 2.41426 -0.0051 -0.1302 4,58421 -0.0301 -0,1337 6,40489 
12 13 14 -0.2958 -0,5004 2,41391 -0,0055 -0.1302 4,58422 -0.0312 -0,1336 6.40494 
13 14 15 -0.3171 -0.5114 2.41419 -04!€l76 -0.1304 4.58427 -0.0343 -0,1339 6,40504 
14 15 16 -0,3097 -0.5151 2.41411 -0.0074 -0,1303 4,58426 
15 16 17 -0,3117 -0.5161 2,41413 -0OX39 -0.1305 4.58429 
16 17 18 -0,3161 -0,5140 2.41417 
17 18 19 -0.3146 -0.5132 2,41416 
18 19 20 -0,3158 -0.5126 2.41416 
19 20 21 -0,3177 -0,5135 2.41418 

the critical points (3.9) and (3.10) respectively. We have found that three parameters 
can be fitted and give the estimates for A , ,  B, and a, in table 2. The ferromagnetic 
amplitudes (A , )  are reasonably well defined ; the antiferromagnetic amplitudes (U J are 
increasing slowly. By graphical extrapolation we estimate 

A = 1 ~ 1 0 1 6 f 0 ~ 0 0 1 0 ( ~ ~ )  A = 0.967 0*003(BCC). (3.14) 

The values found by Fisher and Sykes (1962), using much shorter series, were 1.018 and 
0.973 respectively ; their critical temperatures were 0.01 % and 0.03 % lower respectively. 
The rather large discrepancy in the amplitude for the body-centred cubic lattice is 
probably accounted for by the relatively high value of or B / A  for this lattice which 
implies a slower convergence. 

It is difficult to extrapolate the estimates for a precisely but they seem consistent 
with the limits 

a z 0 . 6 3 0 ( ~ ~ )  a z @622(BCC) (3.15) 

calculated from (3.13) and (3.14) using 

( z - 0 . 1 3 1 ( ~ ~ )  i z - O . ~ ~ ~ ( B C C )  (3.16) 

estimated from table 1. For the square lattice the estimate (' z -0.514 corresponds 
to an antiferromagnetic amplitude of 0.216 in reasonable agreement with the estimate 
a Z 0.22 of I. 

Using the independent estimates for the energy of Sykes et a1 (1972b) we calculate 
the corresponding values for the energetic approximation 

aE 2 0 . 6 0 4 ( ~ ~ )  uE z 0 * 5 8 2 ( ~ ~ ~ ) .  (3.17) 
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Table 2. Estimates for the parameters A , ,  E,, a, assuming y = 1.25, c( = 0.125 

Simple cubic p = 4.5844 Body-centred cubic p = 6.4055 

8 1.0164 
9 1.0167 
10 1,0164 
11 1.0166 
12 1.0164 
13 1.0164 
14 1.0162 
15 1,0162 
16 1.0161 
17 1,0161 

0.04 1 7 
0.0301 
0.0405 
0.0345 
0.0443 
0.0429 
0,0518 
0.0519 
0.0587 
0.0590 

0.4848 
0.4996 
0.5135 
0.5218 
0.5358 
0.5378 
0.5510 
0.5509 
0.561 3 
0.5610 

8 
9 
10 
11 
12 
13 
14 
15 

0,9672 
0.9675 
0.9669 
0.9668 
0.9664 
0.9664 
0.9661 
0.9660 

0.1274 
0.1210 
0.1430 
0.1444 
0.1613 
0.1651 
0.1784 
0.1826 

0,4689 
0,4771 
0,5064 
0.5044 
0.5282 
0.5226 
0.5422 
0.5359 

We conclude that, although the antiferromagnetic amplitude is difficult to determine 
with precision, the overall picture is reasonably consistent and parallels that in two 
dimensions; the amplitude is not very sensitive to lattice structure and differs at most 
by only a few percent from that indicated by the energetic approximation. 

Following the method of I (0 3) we represent the susceptibility by adopting the last 
entries in table 2 and allow for the departure of the earlier coefficients by a correction 
polynomial. Writing t = u/ut we obtain for the simple cubic lattice (correct to 4 decimal 
places) 

X(U) 2 1*0164( 1 - t ) -  1 ' 2 5  + 0*0472( 1 - t ) -  0 ' 2 5  

+0*5622(1 +t )0 .875 +Yz,l(t) 

Yz,l  = - 0.6360 - 0.4669t + 0*0200tZ - 0 .0095~~  

- 0.0006t4 - O-O021t5 - 0.0004t6 - 0.0009t7 

- 0*0003t8 - 0*0004t9 - O*OOO1tiO - 0.0002t" 

(3.18) 

and for the body-centred cubic lattice 

X(U) 'V 0*9669(1 - L ) - " ~ ~  +0*1581(1- t ) - 0 ' 2 5  

+0.5388(1 + t ) 0 ' 8 7 5  +YZ,l(t) 

YZ.1 = - 0.6846 - 0.4732t - 0*0072t2 - 0.0125t3 (3.19) 

- 0.0023t4 - 0 .0037~~  - 0*0013t6 - 0.0014t' 

-0*0006t8 -0*0005t9 -0~0002t10-0~0001t1'. 

Setting t = - 1 we obtain estimates for the critical susceptibility of the antiferromagnet 
of 

xa = 0*3394(~~)  2, = 0.3693(BCC) (3.20) 
in very good agreement with the estimates of Fisher and Sykes (1962) of 0.3397 and 
0.3692 respectively. 

The evaluation of the critical susceptibility depends essentially on the summation 
of an alternating series ; in these circumstances the remainder to be estimated is relatively 
small and not very sensitive to the representation adopted. This accounts for the close 
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agreement with earlier estimates; (3.18) and (3.19) should represent the susceptibility 
numerically in the region of T > T, with an accuracy sufficient for most practical 
purposes. More complicated representations are required if the extrapolated amplitudes 
(3.15) are to be used ; the numerical effect on the antiferromagnetic susceptibility is 
almost negligible. 

4. Conclusion 

We have compared the general pattern of asymptotic behaviour of susceptibility 
coefficients in two and three dimensions. We have found a very close resemblance; 
the data are consistent with the assumption that the values of certain critical parameters 
change with dimension, but not the functional form. For all three dimensional lattices 
the successive estimates for l/uf are increasing, although only slightly ; the trend increases 
with coordination number and is most marked for the face-centred cubic lattice. It is 
implicit in the ratio method that we assume the indicated trends persist ; they certainly 
appear to persist in two dimensions where the exact limit is known. On this basis we 
have made the estimates 

sc p = 43844 f 0.0002 

BCC p = 6.4055 f 0.0010 (4.1) 

FCC p = 9.8290 0*0005. 

These may be compared with previous estimates, quoted by Fisher (1967), who 
gives an extensive bibliography, of 

sc p = 4.5840 

BCC p = 6.4032 (4.2) 

FCC p = 9.828. 

The changes are very small, being greatest for the body-centred cubic lattice and even 
then only 4 parts in 10000. The new values are all higher on the temperature scale 
for the reasons stated; in particular we have assumed that the limits are approached 
in the same manner as they are in two dimensions. It is possible to argue that this is 
erroneous; such a criticism would carry more weight if based on evidence from an 
alternative source. Unfortunately no estimates other than those based on susceptibility 
expansions have so far achieved comparable precision. 

The available data are consistent with the hypothesis that the susceptibility above 
the critical point is well represented by 

- (1 -pu)-1.25~f(u)+(1 + p u ) ~ ' * ~ ~ ~ ~ ( u ) + ~ ( u )  (4.3) 

where Qf,  Qa, and Y are regular in the disc 101 < u f .  The estimation of the amplitudes 
A = Qf(uf) and a = Q,( - uf) is difficult because uf is not known exactly. The ferro- 
magnetic amplitude is reasonably well defined; the amplitude of the much weaker 
antiferromagnetic singularity much less so. Final estimates, consistent with (4.1) are 

A = 1.0163 kO*OOIO(SC) = 0.9667 f0*003(BCC) 
= 0.963 @002(FCC) (4.4) 
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and near U = uf the ferromagnetic susceptibility behaves approximately as 

x - A,(l- Tc/T)-',2' T - t  T,+ (4.5) 
with 

Near U = - uf the antiferromagnetic susceptibility behaves approximately as 

x 1 0*3394+0*630(1 + u / v ~ ) O ' ~ ~ '  v - t  U,+ 

T - t  TN+ 0.3394 + 0*612( 1 - TJT)o'8 " 

x 2 0*3692+0*622(1 +V/U~)~'~'' U +  U,+ 

T +  TN+ 0.3692 + 0.613( 1 - T N / T ) ~ ' ~ ~ ~  

(4.7) 

where the amplitudes are within a few percent of independent estimates of the energetic 
approximation. 
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Appendix 

Expansions for the reduced zero-field susceptibility in powers of the high temperature 
counting variable v = tanh K (equation (1.1)). 

Simple cubic lattice : 

x = 1 -t 6u + 30u2 + 150u3 + 726u4 + 35100~ + 167100~ + 7 9 4 9 4 ~ ~  

+ 3 7 5 1 7 4 ~ ~  + 1769686~~  + 8306862~" + 38975286~" 

+ 182265822~'~ + 852063558~'~ + 3973784886~'~ 

+ 18527532310~'~ + 86228667894~'~ +401225391222d7. . . . 
Body-centred cubic lattice : 

x = 1 -t 80 + 56v2 + 392u3 + 2648u4+ 1 7 8 6 4 ~ ~  + 1 1 8 7 6 0 ~ ~  + 7890320' 

+ 5201048~~  + 34268104~~ + 22467986411" + 1472595144~" 

+ 96 197406480 

+ 266598705620Ou''. . . . 
+ 62823 14 1 1 92d3  + 4092976 1 7 6 7 2 ~ ' ~  

Face-centred cubic lattice : 

x = 1 f 12v + 1320~  + 1 4 0 4 ~ ~  + 1 4 6 5 2 ~ ~  + 1511 1 6 ~ '  + 1546332~~ 

+ 15734460u7+ 159425580u8+ 1609987708~~ -+ 16215457188~'~ 

+ 162961837500~" + 1634743178420~'~. , . . 
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